Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1204124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325470

RESUMO

Background: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play key roles in diabetic kidney disease (DKD). The miR-379 megacluster of miRNAs and its host transcript lnc-megacluster (lncMGC) are regulated by transforming growth factor-ß (TGF-ß), increased in the glomeruli of diabetic mice, and promote features of early DKD. However, biochemical functions of lncMGC are unknown. Here, we identified lncMGC-interacting proteins by in vitro-transcribed lncMGC RNA pull down followed by mass spectrometry. We also created lncMGC-knockout (KO) mice by CRISPR-Cas9 editing and used primary mouse mesangial cells (MMCs) from the KO mice to examine the effects of lncMGC on the gene expression related to DKD, changes in promoter histone modifications, and chromatin remodeling. Methods: In vitro-transcribed lncMGC RNA was mixed with lysates from HK2 cells (human kidney cell line). lncMGC-interacting proteins were identified by mass spectrometry. Candidate proteins were confirmed by RNA immunoprecipitation followed by qPCR. Cas9 and guide RNAs were injected into mouse eggs to create lncMGC-KO mice. Wild-type (WT) and lncMGC-KO MMCs were treated with TGF-ß, and RNA expression (by RNA-seq and qPCR) and histone modifications (by chromatin immunoprecipitation) and chromatin remodeling/open chromatin (by Assay for Transposase-Accessible Chromatin using sequencing, ATAC-seq) were examined. Results: Several nucleosome remodeling factors including SMARCA5 and SMARCC2 were identified as lncMGC-interacting proteins by mass spectrometry, and confirmed by RNA immunoprecipitation-qPCR. MMCs from lncMGC-KO mice showed no basal or TGF-ß-induced expression of lncMGC. Enrichment of histone H3K27 acetylation and SMARCA5 at the lncMGC promoter was increased in TGF-ß-treated WT MMCs but significantly reduced in lncMGC-KO MMCs. ATAC peaks at the lncMGC promoter region and many other DKD-related loci including Col4a3 and Col4a4 were significantly lower in lncMGC-KO MMCs compared to WT MMCs in the TGF-ß-treated condition. Zinc finger (ZF), ARID, and SMAD motifs were enriched in ATAC peaks. ZF and ARID sites were also found in the lncMGC gene. Conclusion: lncMGC RNA interacts with several nucleosome remodeling factors to promote chromatin relaxation and enhance the expression of lncMGC itself and other genes including pro-fibrotic genes. The lncMGC/nucleosome remodeler complex promotes site-specific chromatin accessibility to enhance DKD-related genes in target kidney cells.

2.
Am J Physiol Renal Physiol ; 323(6): F686-F699, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227097

RESUMO

Obesity is associated with increased risk for diabetes and damage to the kidneys. Evidence suggests that miR-379 plays a role in the pathogenesis of diabetic kidney disease. However, its involvement in obesity-induced kidney injury is not known and was therefore investigated in this study by comparing renal phenotypes of high-fat diet (HFD)-fed wild-type (WT) and miR-379 knockout (KO) mice. Male and female WT mice on the HFD for 10 or 24 wk developed obesity, hyperinsulinemia, and kidney dysfunction manifested by albuminuria and glomerular injuries. However, these adverse alterations in HFD-fed WT mice were significantly ameliorated in HFD-fed miR-379 KO mice. HFD feeding increased glomerular expression of miR-379 and decreased its target gene, endoplasmic reticulum (ER) degradation enhancing α-mannosidase-like protein 3 (Edem3), a negative regulator of ER stress. Relative to the standard chow diet-fed controls, expression of profibrotic transforming growth factor-ß1 (Tgf-ß1) was significantly increased, whereas Zeb2, which encodes ZEB2, a negative regulator of Tgf-ß1, was decreased in the glomeruli in HFD-fed WT mice. Notably, these changes as well as HFD-induced increased expression of other profibrotic genes, glomerular hypertrophy, and interstitial fibrosis in HFD-fed WT mice were attenuated in HFD-fed miR-379 KO mice. In cultured primary glomerular mouse mesangial cells (MMCs) isolated from WT mice, treatment with high insulin (mimicking hyperinsulinemia) increased miR-379 expression and decreased its target, Edem3. Moreover, insulin also upregulated Tgf-ß1 and downregulated Zeb2 in WT MMCs, but these changes were significantly attenuated in MMCs from miR-379 KO mice. Together, these experiments revealed that miR-379 deletion protects mice from HFD- and hyperinsulinemia-induced kidney injury at least in part through reduced ER stress.NEW & NOTEWORTHY miR-379 knockout mice are protected from high-fat diet (HFD)-induced kidney damage through key miR-379 targets associated with ER stress (Edem3). Mechanistically, treatment of mesangial cells with insulin (mimicking hyperinsulinemia) increased expression of miR-379, Tgf-ß1, miR-200, and Chop and decreases Edem3. Furthermore, TGF-ß1-induced fibrotic genes are attenuated by a GapmeR targeting miR-379. The results implicate a miR-379/EDEM3/ER stress/miR-200c/Zeb2 signaling pathway in HFD/obesity/insulin resistance-induced renal dysfunction. Targeting miR-379 with GapmeRs can aid in the treatment of obesity-induced kidney disease.


Assuntos
Nefropatias Diabéticas , Resistência à Insulina , MicroRNAs , Animais , Feminino , Masculino , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
Mol Ther Nucleic Acids ; 30: 115-130, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36250205

RESUMO

We investigated the role of microRNA (miR-379) in the pathogenesis of obesity, adipose tissue dysfunction, and insulin resistance (IR). We used miR-379 knockout (miR-379KO) mice to test whether loss of miR-379 affects high-fat diet (HFD)-induced obesity and IR via dysregulation of key miR-379 targets in adipose tissue. Increases in body weight, hyperinsulinemia, and IR in wild-type (WT)-HFD mice were significantly attenuated in miR-379KO-HFD mice with some sex differences. Relative to control chow-fed mice, in WT-HFD mice, expression of miR-379 and C/EBP homologous protein (Chop) (pro-endoplasmic reticulum [ER] stress) and inflammation in perigonadal white adipose tissue (gWAT) were increased, whereas adipogenic genes and miR-379 target genes (Vegfb and Edem3) were decreased. These changes, as well as key parameters of brown adipose tissue dysfunction (including mitochondrial defects), were significantly attenuated in miR-379KO-HFD mice. WAT from obese human subjects with and without type 2 diabetes showed increased miR-379 and decreased miR-379 target genes. In cultured 3T3L1 pre-adipocytes, miR-379 inhibitors increased miR-379 targets and adipogenic genes. These data suggest that miR-379 plays an important role in HFD-induced obesity through increased adipose inflammation, mitochondrial dysfunction, and ER stress as well as impaired adipogenesis and angiogenesis. miR-379 inhibitors may be developed as novel therapies for obesity and associated complications.

4.
Front Endocrinol (Lausanne) ; 13: 821849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222279

RESUMO

Skeletal muscle accounts for ~80% of insulin-stimulated glucose uptake. The Group I p21-activated kinase 1 (PAK1) is required for the non-canonical insulin-stimulated GLUT4 vesicle translocation in skeletal muscle cells. We found that the abundances of PAK1 protein and its downstream effector in muscle, ARPC1B, are significantly reduced in the skeletal muscle of humans with type 2 diabetes, compared to the non-diabetic controls, making skeletal muscle PAK1 a candidate regulator of glucose homeostasis. Although whole-body PAK1 knockout mice exhibit glucose intolerance and are insulin resistant, the contribution of skeletal muscle PAK1 in particular was unknown. As such, we developed inducible skeletal muscle-specific PAK1 knockout (skmPAK1-iKO) and overexpression (skmPAK1-iOE) mouse models to evaluate the role of PAK1 in skeletal muscle insulin sensitivity and glucose homeostasis. Using intraperitoneal glucose tolerance and insulin tolerance testing, we found that skeletal muscle PAK1 is required for maintaining whole body glucose homeostasis. Moreover, PAK1 enrichment in GLUT4-myc-L6 myoblasts preserves normal insulin-stimulated GLUT4 translocation under insulin resistance conditions. Unexpectedly, skmPAK1-iKO also showed aberrant plasma insulin levels following a glucose challenge. By applying conditioned media from PAK1-enriched myotubes or myoblasts to ß-cells in culture, we established that a muscle-derived circulating factor(s) could enhance ß-cell function. Taken together, these data suggest that PAK1 levels in the skeletal muscle can regulate not only skeletal muscle insulin sensitivity, but can also engage in tissue crosstalk with pancreatic ß-cells, unveiling a new molecular mechanism by which PAK1 regulates whole-body glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Quinases Ativadas por p21 , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Camundongos , Músculo Esquelético/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
6.
Commun Biol ; 4(1): 30, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398021

RESUMO

Diabetic kidney disease (DKD) is a major complication of diabetes. Expression of members of the microRNA (miRNA) miR-379 cluster is increased in DKD. miR-379, the most upstream 5'-miRNA in the cluster, functions in endoplasmic reticulum (ER) stress by targeting EDEM3. However, the in vivo functions of miR-379 remain unclear. We created miR-379 knockout (KO) mice using CRISPR-Cas9 nickase and dual guide RNA technique and characterized their phenotype in diabetes. We screened for miR-379 targets in renal mesangial cells from WT vs. miR-379KO mice using AGO2-immunopreciptation and CLASH (cross-linking, ligation, sequencing hybrids) and identified the redox protein thioredoxin and mitochondrial fission-1 protein. miR-379KO mice were protected from features of DKD as well as body weight loss associated with mitochondrial dysfunction, ER- and oxidative stress. These results reveal a role for miR-379 in DKD and metabolic processes via reducing adaptive mitophagy. Strategies targeting miR-379 could offer therapeutic options for DKD.


Assuntos
Albuminúria/metabolismo , Nefropatias Diabéticas/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Animais , Nefropatias Diabéticas/patologia , Matriz Extracelular/metabolismo , Membrana Basal Glomerular/patologia , Células Mesangiais/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo
7.
Diabetologia ; 62(5): 845-859, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707251

RESUMO

AIMS/HYPOTHESIS: Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain ß (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. METHODS: Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. RESULTS: We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. CONCLUSIONS/INTERPRETATION: These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Glucose/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Idoso , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Cinesinas , Masculino , Camundongos , Pessoa de Meia-Idade , Ligação Proteica , Domínios Proteicos
8.
Diabetes ; 67(7): 1332-1344, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661782

RESUMO

Loss of functional ß-cell mass is an early feature of type 1 diabetes. To release insulin, ß-cells require soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, as well as SNARE complex regulatory proteins like double C2 domain-containing protein ß (Doc2b). We hypothesized that Doc2b deficiency or overabundance may confer susceptibility or protection, respectively, to the functional ß-cell mass. Indeed, Doc2b+/- knockout mice show an unusually severe response to multiple-low-dose streptozotocin (MLD-STZ), resulting in more apoptotic ß-cells and a smaller ß-cell mass. In addition, inducible ß-cell-specific Doc2b-overexpressing transgenic (ßDoc2b-dTg) mice show improved glucose tolerance and resist MLD-STZ-induced disruption of glucose tolerance, fasting hyperglycemia, ß-cell apoptosis, and loss of ß-cell mass. Mechanistically, Doc2b enrichment enhances glucose-stimulated insulin secretion (GSIS) and SNARE activation and prevents the appearance of apoptotic markers in response to cytokine stress and thapsigargin. Furthermore, expression of a peptide containing the Doc2b tandem C2A and C2B domains is sufficient to confer the beneficial effects of Doc2b enrichment on GSIS, SNARE activation, and apoptosis. These studies demonstrate that Doc2b enrichment in the ß-cell protects against diabetogenic and proapoptotic stress. Furthermore, they identify a Doc2b peptide that confers the beneficial effects of Doc2b and may be a therapeutic candidate for protecting functional ß-cell mass.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Citoproteção/genética , Inflamação/genética , Células Secretoras de Insulina/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Pancreatite/genética , Animais , Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Feminino , Predisposição Genética para Doença , Inflamação/patologia , Inflamação/prevenção & controle , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Pancreatite/patologia , Pancreatite/prevenção & controle , Estreptozocina
9.
Artigo em Inglês | MEDLINE | ID: mdl-29209279

RESUMO

Glucose is the principal cellular energy source in humans and maintenance of glucose homeostasis is critical for survival. Glucose uptake into peripheral skeletal muscle and adipose tissues requires the trafficking of vesicles containing glucose transporter-4 (GLUT4) from the intracellular storage compartments to the cell surface. Trafficking of GLUT4 storage vesicles is initiated via the canonical insulin signaling cascade in skeletal muscle and fat cells, as well as via exercise-induced contraction in muscle cells. Recent studies have elucidated steps in the signaling cascades that involve remodeling of the cytoskeleton, a process that underpins the mechanical movement of GLUT4 vesicles. This review is focused upon an alternate phosphoinositide-3 kinase-dependent pathway involving Ras-related C3 botulinum toxin substrate 1 signaling through the p21-activated kinase p21-activated kinase 1 and showcases related signaling events that co-regulate both the depolymerization and re-polymerization of filamentous actin. These new insights provide an enriched understanding into the process of glucose transport and yield potential new targets for interventions aimed to improve insulin sensitivity and remediate insulin resistance, pre-diabetes, and the progression to type 2 diabetes.

10.
J Biol Chem ; 292(46): 19034-19043, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28972183

RESUMO

Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Insulina/metabolismo , Músculo Esquelético/citologia , Subunidades Proteicas/metabolismo , Ratos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
11.
Diabetologia ; 59(10): 2145-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27394663

RESUMO

AIMS/HYPOTHESIS: Human islets from type 2 diabetic donors are reportedly 80% deficient in the p21 (Cdc42/Rac)-activated kinase, PAK1. PAK1 is implicated in beta cell function and maintenance of beta cell mass. We questioned the mechanism(s) by which PAK1 deficiency potentially contributes to increased susceptibility to type 2 diabetes. METHODS: Non-diabetic human islets and INS 832/13 beta cells cultured under diabetogenic conditions (i.e. with specific cytokines or under glucolipotoxic [GLT] conditions) were evaluated for changes to PAK1 signalling. Combined effects of PAK1 deficiency with GLT stress were assessed using classic knockout (Pak1 (-/-) ) mice fed a 45% energy from fat/palmitate-based, 'western' diet (WD). INS 832/13 cells overexpressing or depleted of PAK1 were also assessed for apoptosis and signalling changes. RESULTS: Exposure of non-diabetic human islets to diabetic stressors attenuated PAK1 protein levels, concurrent with increased caspase 3 cleavage. WD-fed Pak1 knockout mice exhibited fasting hyperglycaemia and severe glucose intolerance. These mice also failed to mount an insulin secretory response following acute glucose challenge, coinciding with a 43% loss of beta cell mass when compared with WD-fed wild-type mice. Pak1 knockout mice had fewer total beta cells per islet, coincident with decreased beta cell proliferation. In INS 832/13 beta cells, PAK1 deficiency combined with GLT exposure heightened beta cell death relative to either condition alone; PAK1 deficiency resulted in decreased extracellular signal-related kinase (ERK) and B cell lymphoma 2 (Bcl2) phosphorylation levels. Conversely, PAK1 overexpression prevented GLT-induced cell death. CONCLUSIONS/INTERPRETATION: These findings suggest that PAK1 deficiency may underlie an increased diabetic susceptibility. Discovery of ways to remediate glycaemic dysregulation via altering PAK1 or its downstream effectors offers promising opportunities for disease intervention.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Glicemia/metabolismo , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Immunoblotting , Técnicas In Vitro , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação/genética , Fosforilação/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/genética
12.
PLoS One ; 10(8): e0134562, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26247874

RESUMO

Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of ß-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression strain.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Isopropiltiogalactosídeo/farmacologia , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Óperon Lac/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
13.
Diabetologia ; 58(11): 2573-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26224100

RESUMO

AIMS/HYPOTHESIS: Rho GTPases (Ras-related C3 botulinum toxin substrate 1 [Rac1] and cell division cycle 42 [Cdc42]) have been shown to regulate glucose-stimulated insulin secretion (GSIS) via cytoskeletal remodelling, trafficking and fusion of insulin-secretory granules with the plasma membrane. GTP loading of these G proteins, which is facilitated by GDP/GTP exchange factors, is a requisite step in the regulation of downstream effector proteins. Guanine nucleotide exchange factor VAV2 (VAV2), a member of the Dbl family of proteins, has been identified as one of the GDP/GTP exchange factors for Rac1. Despite recent evidence on the regulatory roles of VAV2 in different cell types, roles of this guanine nucleotide exchange factor in the signalling events leading to GSIS remain undefined. Using immunological, short interfering RNA (siRNA), pharmacological and microscopic approaches we investigated the role of VAV2 in GSIS from islet beta cells. METHODS: Co-localisation of Rac1 and VAV2 was determined by Triton X-114 phase partition and confocal microscopy. Glucose-induced actin remodelling was quantified by live cell imaging using the LifeAct-GFP fluorescent biosensor. Rac1 activation was determined by G protein linked immunosorbent assay (G-LISA). RESULTS: Western blotting indicated that VAV2 is expressed in INS-1 832/13 beta cells, normal rat islets and human islets. Vav2 siRNA markedly attenuated GSIS in INS-1 832/13 cells. Ehop-016, a newly discovered small molecule inhibitor of the VAV2-Rac1 interaction, or siRNA-mediated knockdown of VAV2 markedly attenuated glucose-induced Rac1 activation and GSIS in INS-1 832/13 cells. Pharmacological findings were recapitulated in primary rat islets. A high glucose concentration promoted co-localisation of Rac1 and VAV2. Real-time imaging in live cells indicated a significant inhibition of glucose-induced cortical actin remodelling by Ehop-016. CONCLUSIONS/INTERPRETATION: Our data provide the first evidence to implicate VAV2 in glucose-induced Rac1 activation, actin remodelling and GSIS in pancreatic beta cells.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Proteínas Proto-Oncogênicas c-vav/genética , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/genética
14.
Biochem Pharmacol ; 92(2): 380-8, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25199455

RESUMO

Skeletal muscle accounts for ∼ 80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined. Toward this, we have employed the PAK1 inhibitor, IPA3, in studies using L6-GLUT4-myc muscle cells. IPA3 fully ablated insulin-stimulated GLUT4 translocation to the PM, corroborating the observation of ablated insulin-stimulated GLUT4 accumulation in the PM of skeletal muscle from PAK1(-/-) knockout mice. IPA3-treatment also abolished insulin-stimulated glucose uptake into skeletal myotubes. Mechanistically, live-cell imaging of myoblasts expressing the F-actin biosensor LifeAct-GFP treated with IPA3 showed blunting of the normal insulin-induced cortical actin remodeling. This blunting was underpinned by a loss of normal insulin-stimulated cofilin dephosphorylation in IPA3-treated myoblasts. These findings expand upon the existing model of actin remodeling in glucose uptake, by placing insulin-stimulated PAK1 signaling as a required upstream step to facilitate actin remodeling and subsequent cofilin dephosphorylation. Active, dephosphorylated cofilin then provides the G-actin substrate for continued F-actin remodeling to facilitate GLUT4 vesicle translocation for glucose uptake into the skeletal muscle cell.


Assuntos
Actinas/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Mioblastos Esqueléticos/enzimologia , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células Cultivadas , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Mioblastos Esqueléticos/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
15.
Antimicrob Agents Chemother ; 58(6): 3312-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687493

RESUMO

Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenate, the first committed and rate-limiting step toward coenzyme A (CoA) biosynthesis. In our earlier reports, we had established that the type I isoform encoded by the coaA gene is an essential pantothenate kinase in Mycobacterium tuberculosis, and this vital information was then exploited to screen large libraries for identification of mechanistically different classes of PanK inhibitors. The present report summarizes the synthesis and expansion efforts to understand the structure-activity relationships leading to the optimization of enzyme inhibition along with antimycobacterial activity. Additionally, we report the progression of two distinct classes of inhibitors, the triazoles, which are ATP competitors, and the biaryl acetic acids, with a mixed mode of inhibition. Cocrystallization studies provided evidence of these inhibitors binding to the enzyme. This was further substantiated with the biaryl acids having MIC against the wild-type M. tuberculosis strain and the subsequent establishment of a target link with an upshift in MIC in a strain overexpressing PanK. On the other hand, the ATP competitors had cellular activity only in a M. tuberculosis knockdown strain with reduced PanK expression levels. Additionally, in vitro and in vivo survival kinetic studies performed with a M. tuberculosis PanK (MtPanK) knockdown strain indicated that the target levels have to be significantly reduced to bring in growth inhibition. The dual approaches employed here thus established the poor vulnerability of PanK in M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Western Blotting , Técnicas de Silenciamento de Genes , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Fenótipo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Conformação Proteica , Quinolonas/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia
16.
Adv Appl Bioinform Chem ; 6: 1-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23413046

RESUMO

The equity of a drug target is principally evaluated by its genetic vulnerability with tools ranging from antisense- and microRNA-driven knockdowns to induced expression of the target protein. In order to upgrade the process of antibacterial target identification and discern its most effective type of inhibition, an in silico toolbox that evaluates its genetic and chemical vulnerability leading either to stasis or cidal outcome was constructed and validated. By precise simulation and careful experimentation using enolpyruvyl shikimate-3-phosphate synthase and its specific inhibitor glyphosate, it was shown that genetic knockdown is distinct from chemical knockdown. It was also observed that depending on the particular mechanism of inhibition, viz competitive, uncompetitive, and noncompetitive, the antimicrobial potency of an inhibitor could be orders of magnitude different. Susceptibility of Escherichia coli to glyphosate and the lack of it in Mycobacterium tuberculosis could be predicted by the in silico platform. Finally, as predicted and simulated in the in silico platform, the translation of growth inhibition to a cidal effect was able to be demonstrated experimentally by altering the carbon source from sorbitol to glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA